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Complexity of Indefinite Elliptic Problems 

By Arthur G. Werschulz* 

Abstract. This paper deals with the approximate solution of a linear regularly-elliptic 
2mth-order boundary-value problem Lu = f, with f e Hr (0) for r >-m. Suppose 
that the problem is indefinite, i.e., the variational form of the problem involves a weakly- 
coercive bilinear form. Of particular interest is the quality of the finite element method 
(FEM) of degree k using n inner products of f. The error of the approximation is 
measured in the Sobolev 1-norm (O < I < m); we assume that k > 2m - 1 - 1. We 
assume that an a priori bound is known for either the Sobolev r-norm or for the Sobolev 
r-seminorm of f. We first consider the normed case. We find that the FEM has minimal 
error if and only if k > 2m- I+r. Regardless of the values of k and r, there exists a linear 
combination (called the spline algorithm) of the inner products used by the FEM which 
does have minimal error. For the seminormed case, we give a very restrictive condition 
which is necessary and sufficient for the error of the FEM to have a bound which is 
independent of f. When this condition holds, we find that the FEM has minimal error 
if and only if k > 2m - 1 + r. However, we once again find that the spline algorithm 
(using the same inner products as does the FEM) has minimal error, no matter what 
values k and r have and regardless of whether the FEM has uniformly bounded error. We 
also show that the inner products used by the FEM is the best set of linear functionals 
to use. 

1. Introduction. This paper is a theoretical study of the approximate solution 
of the elliptic boundary-value problem Lu = f. We assume the problem is linear 
regularly-elliptic of 2mth order with homogeneous boundary conditions, and that f 
is defined on a region Q C RN. The smoothness of f will be given by the assumption 
that f E HTr(Q), where r > -m. (See Section 2.) We want to approximate the 
solution u by using the values of n linear functionals of f, a typical example being 
the values of f at n points in Q. (See Section 3.) 

We address two problems: 
(i) Given the values of n linear functionals of f, how may they be combined so 

as to approximate the solution of the elliptic problem with the smallest possible 
error? 

(ii) What is the best set of n linear functionals to use? 
This paper is an extension of [15], where this problem was considered under the 

following conditions: 
(i) The elliptic problem Lu = f is definite, i.e., its variational form involves a 

coercive bilinear form. 
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(ii) The error of the approximate solution is measured by the energy norm, which 
is equivalent to the Sobolev m-norm. 

(iii) An a priori bound is given on the Sobolev r-norm of f. 
In [15], we studied the finite element method (FEM) of degree k, which uses n 

inner products (f, s1),... ., (f, sn), where { 81, .. , Sn } is a basis for a finite element 
subspace of degree k and (.,) is the L2(O)-inner product. (See Section 4.) Here, 
we must assume k > m; otherwise, the FEM is not well-defined [15, Lemma 4.1]. 
The main result of [15] is that the FEM has minimal error (to within a constant) 
if and only if k > 2m - 1 + r. We also prove that the set { (f, s1), ... , (fl) } of 
inner products is always (to within a constant) the best choice of linear functionals. 
This holds for { 81, . . ., Sn } a basis for a finite element subspace of degree k, for 
any value of k > m and any value of r. 

How crucial are the conditions in [15]? 
Condition (i) disallows problems such as the Helmholtz problem: given f E 

HT((Q), find u: R R such that 

(1.1) Au+Au=f inR, 
u=O ond9, 

where A is not an eigenvalue of -A. If A is bigger than the smallest eigenvalue of 
-A, this problem does not yield a coercive bilinear form. 

Condition (ii) is that the energy norm was used. Although this norm is equivalent 
to the Sobolev m-norm, the constant which measures this equivalence may be so 
large that a very good energy-norm solution may not be sufficiently accurate in 
the m-norm. (This would appear to be the situation in boundary-layer problems.) 
Moreover, it is sometimes of greater interest to use other norms, such as the L2(Q)- 
norm for measuring displacement error. 

Condition (iii) is needed to make the error of the approximate solution finite, and 
is implicitly used as a standard assumption for partial differential equations and 
finite element methods [1], [3], [8]. However, instead of assuming that the Sobolev 
r-norm of f is bounded, one may only wish to assume an a priori bound on the 
Sobolev r-seminorm of f. 

In this paper, the results of [15] are extended by weakening conditions (i), (ii), 
and (iii) above. We assume: 

(i)'The elliptic problem Lu = f is indefinite: its variational form involves a 
weakly coercive bilinear form. 

(ii)' Error is measured in the Sobolev I-norm, where 0 < I < m. 
(iii)'Both the normed and seminormed cases are considered, i.e., an a prior 

bound is given on the Sobolev r-norm or r-seminorm of f E HT(Q) (respectively), 
the seminormed case making sense if and only if r is a nonnegative integer. 

Again, we will be interested in whether the FEM of degree k has minimal er- 
ror, and whether the inner products used by the FEM form the best set of linear 
functional. We assume in this paper that 

(1.2) k > 2m- 1- l; 

see Section 3 for further discussion. 
It turns out that in the normed case, replacing (i) by (i)'causes almost no dif- 

ficulty, while replacing (ii) by (ii)' may be done via a variant of the Aubin-Nitsche 
duality argument [5, pp. 136-139]. Hence, in the normed case, the main results of 
[15] still hold; see Section 4 for details. 
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The situation is different for the seminormed case. As an example, consider the 
problems 

(1.3) -u" + u= f in (0,1), u(0) = u(l) =0 

and 

(1.4) -u? + u =f in (0,1), u'(0) = u'(l) =0, 

where 
1 2 

(1.5) f E H1(0, 1) and j (f'(x))2 dx < 1. 

For the problem (1.3), the error of the FEM is not uniformly bounded over all 
f satisfying (1.5), no matter what the value of k is. Despite this, there exists a 
linear combination of the inner products used by the FEM whose error is uniformly 
bounded over all such f. This linear combination is called the spline algorithm; see 
Section 3 for further discussion. In fact, the error of the spline algorithm goes to 
zero, independently of f, as the number of inner products goes to infinity. Moreover, 
there is no better choice of linear functionals for the problem (1.3) than the inner 
products which are used by the FEM. 

For the problem (1.4), the situation is quite different. The FEM always has finite 
error and, when k > 2, its error is almost minimal. Once again, the inner products 
used by the FEM are (to within a constant factor) the best linear functional, 
regardless of the value of k > 1. 

We discuss the general seminormed case in detail in Section 5. We show that 
the FEM has finite error if and only if Pr_[(Q) C LSn, where Pri_(Q) is the 
restriction to Q of the space of polynomials of degree at most r - 1, and S" is 
the finite element subspace of dimension n. This condition is very restrictive; see 
Remark 6.1. When this condition holds, we find that the error of the FEM is (to 
within a constant factor) minimal if and only if k > 2m - 1 + r. Regardless of 
whether the error of the FEM is minimal, there is a linear combination (called the 
spline algorithm) of the inner products used by the FEM whose error is minimal. 
Moreover, the inner products used by the FEM are (to within a constant factor) the 
best linear functional, regardless of the value of k > m, and regardless of whether 
PrI(Q) C LSn. 

In Section 6, we discuss the complexity (i.e., the minimal cost) of obtaining 
approximate solutions whose error is less than e. In the normed case, the FEM 
produces an approximation with minimal cost if and only if k > 2m - 1 + r. If, 
however, k < 2m - 1 + r, the penalty for using the FEM (instead of the spline algo- 
rithm, which always produces an approximation with minimal cost) is unbounded 
as E -* 0, for both the normed and seminormed cases. Since this is an asymptotic 
measure, we also wish to know whether there is a penalty for using the FEM for 
fixed e of moderate size when k < 2m- 1 +r. We consider a simple model problem, 
and show that the complexity of the spline algorithm is less than that of the FEM 
whenever e < co, where co 0.227. 

Finally, in Section 7, we summarize our work, and point out some possible ex- 
tensions and open questions. 

2. The Variational Boundary-Value Problem. In what follows, we use the 
standard notation for Sobolev spaces, inner products, and norms, for multi-indices, 
etc., found in [5]. Fractional- and negative-order Sobolev spaces are defined by 
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Hilbert-space interpolation and duality, respectively; see [3, Chapter 2] and [8, 
Chapter 4] for details. 

Let Q C RN be a bounded, simply connected, COO region. Define the uniformly 
strongly elliptic operator 

Lv =I E (-m D(ac3D3v), 

with real coefficients aces E COO(Ti) such that aces = an,. In order to have appro- 
priate boundary conditions, let 

Bjv= E bjDav (O <j Am- 1), 
lal<qj 

where bjo, E COO(d1) are real-valued and 

? < o < ... < qm-i < 2m -1. 
We assume that { Bj }7m-1 is a normal family of operators which covers L on XI. 
To make the boundary-value problem be selfadjoint, we let 

M*= min{j: qj >m 

and require that 

{qj~j = U{2m-1-qj jm* = I?X ... 1}. 
(See [3, Chapter 3] and [8, Chapter 5] for further definitions and illustrative exam- 
ples.) We are interested in solving the elliptic boundary-value problem: 

Given f E Hr(jj), where r > -m, find u: f- R such that 

Lu= f in Q, 
Bju = 0 on ao3 (O < j < m- 1). 

Let 
HEm(Q) = {vfH E m([): Bjv = O (O < j < m* -1)} 

denote the space of Hm(Q)-functions satisfying the essential boundary conditions. 
We define a symmetric, continuous bilinear form B on H([(Q) by 

B(v, w) = I j aO,,D'vD3w . 
k41131?m 

In [15], we assumed that B was HEm(Q)-coercive [8], i.e., that there exists a 
positive constant -y such that 

B(v,v) > -yj|v||2 Al E Hp (Q) 
When m = 0, the conditions on L yield that B is L2(Q)-coercive. However, for 
m > 1, there exist elliptic boundary-value problems which do not yield a bilinear 
form that is HEm(Q)-coercive (such as the Dirichlet problem for the Helmholtz 
equation). 

In this paper, we assume instead that B is weakly HFm(Q)-coercive [8, p. 310]. 
Since B is symmetric, this means that there exists a positive constant -y such that: 

For any nonzero v E HEm(Q), there exists nonzero w E HP (Q) such that 

(2.2) IB(v, w)l > |IIvI|mlwIlm. 
The following lemma gives a condition which is sufficient to establish weak coer- 
civity. The result appears to be well-known; its proof for arbitrary m is a straight- 
forward modification of the proof for the case m = 1 which is found in [3, Chapter 

5]. 
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LEMMA 2.1. Let m > 1. Suppose that 
(i) the only solution of (2.1) with f = 0 is u = 0, and 
(ii) B is [H;F(f), L2(f2)]-coercive [8, p. 301]; that is, there exist -yo > 0 and 

1yi > 0 such that 

(2.3) IB(v,v)I > _yoIv12 - _yiIvIIY 'i Vv E Hp(f2). 
Then B is weakly HF(f2)-coercive. L1 

Remark 2.1. Suppose that Bj is the jth normal derivative operator (0 < j < 
m - 1), so that (2.1) is a Dirichlet problem and H;F(1) = Hom(Q). Then (2.3) 
is Garding's inequality [1], which follows immediately from the conditions on L. 
Hence, B is weakly Hom(11)-coercive provided that (i) holds in Lemma 2.1. For 
example, the Helmholtz problem (1.1) is weakly H01(11)-coercive if A is not an 
eigenvalue of -A. LO 

We now define the variational boundary problem as follows. Let r > -m. We 
wish to solve the problem: 

Given f E Hr(Q2), find u = Sf E HE (Q2) such that 

(2.4) B(u, v) = (f, v)o = ffv Vv E Hp (Q) 

From the Generalized Lax-Milgram Theorem [3, Theorem 5.2.1], S is a Hilbert 
space isomorphism of H-m((Q) onto Hp,'(Q), and so S: Hr(j2) - H; (Q) is a 
bounded linear injection. Since B is only assumed to be weakly coercive (i.e., we 
do not know that B(v, v) > -yIvII holds), the problem (2.4) is said to be indefinite. 

It is useful to recall the "shift theorem" ([3, Chapter 3], [8, Chapter 5]), which 
states that since f E Hr(Q2), we have Sf E Hp (n) n H2m+r(Q2), and that there 
exists a positive constant a, which is independent of f, such that 

(2.5) aU'IISfII2m+r < IfI hr < UIISfII2m+r. 

If r > N/2, then the shift theorem, Sobolev's embedding theorem, and an m-fold 
integration by parts yield that u = Sf is the solution to (2.1). 

3. Finite Element Methods and Information. In this section, we discuss 
the finite element method (FEM). We describe the finite element information (FEI) 
which the FEM uses, and recall some quasi-optimality results from [15] for the case 
where assumptions (i), (ii), and (iii) from Section 1 hold. 

We let { Sn }?n??I be a regular family of finite element subspaces of degree k. That 
is, Sn is an n-dimensional subspace of H;F(Q) consisting of piecewise polynomials 
of degree k over a triangulation Tn of Q, where { 7n 1?n?I is regular [8, p. 132]. Of 
course, since Q is COO, we must make an additional assumption about boundary 
elements to guarantee that Sn C H;F (Q) in the situation where (2.1) is not a 
Neumann problem. (For instance, we may use curved elements as in [6].) 

Remark 3.1. As indicated in (1.2) of the introduction, we assume that k > 
2m- 1- 1 in this paper. This technical assumption is needed for the proofs of some 
upper bounds which appear below. However, there are a number of situations where 
this holds automatically: 

(i) If max{ 0, m-i } < 1 < m, then (1.2) holds by [15, Lemma 4.1]. In particular, 
(1.2) holds when m = 0 (where we have 1 = 0) or when m = 1 (in which case 1 = 0 
or 1 = 1). 

(ii) If N > 2 and triangular elements are used, the results of [16] and the fact 
that 1 > 0 show that (1.2) holds. 
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Hence, the only possibility that (1.2) will fail is when N = 1 or when rectangular 
elements are used. However, it is possible for k = m in either of these settings. 
Thus (1.2) can indeed fail to hold when N = 1 or when rectangular elements are 
used. U 

The finite element method (FEM) using { Sn }?n?=I is defined as follows. 
Let f E Hr(f2). Let { , ... ., sn } be a basis for Sn. Given n inner products 

[Y :2:1 
(fi 8n)O 

choose un E Sn such that 

(3.1) B(un, Si) = (fSi )o (1 < i < n). 

The FEM yields un which depends only on AInf; we write un = pn (A1nf). We call 
AIn finite element information (FEI) of cardinality n. 

We discuss some properties of the FEM. It is well-known (see, e.g., [3, Chapter 6] 
for the case m = 1, the general case being similar) that if { Tn }?n? is quasi-uniform 
[8, p. 272], then B is weakly coercive on { Sn 1?n?= in the sense of [8, Theorem 8.1], 
and hence there exists a unique solution un E Sn to (3.1). Moreover, in this quasi- 
uniform case, we may use (1.2) and [8, Theorems 8.2 and 8.6] to see that there 
exists a positive constant C (independent of f, u, n, and un) such that 

(3.2) 11Sf - (pnP nf)nlm = Ilu - UnIlm < C inf I|u - Slim 

and 

(3.3) 11Sf - Pn(.Mnf)A11 = IIu - n ll < Cn-<(l+m-1)/N 11f 11 V Czf E r (Q) 
where 

(3.4) it = min{k + 1 - m, m + r}. 

We now relate the results of [15], where we assumed that (i), (ii), and (iii) 
from the Introduction held. These results, as well as those in the remainder of this 
paper, will be described using the Q- and e-notations, as well as the more standard 
0-notation: for functions f and g, we write 

f = f2(g) iff g = (f) 

and 
f=O(g) ifff=O(g) andg=O(f). 

Define the error of the FEM as 

(3.5) em('pn, 7) = sup IISISf '-pn (nf)IIm, 

where . is the unit ball of Hr(Q). Then 

(3.6) em(pn, 7) = f1(n-/N) as n -- oo, 

where ,u is as defined above. Furthermore, in the quasi-uniform case, the bound in 

(3.6) can be achieved, i.e., 

(3.7) em(On,) = E(n-,/N) as n - oo. 
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We next ask whether there is any better way of combining the inner products in 
AINf, so as to minimize the error. Let 

(3.8) em(An, i) = inf sup I1Sf- 'p( Mnf)Ifm. 
90 f E . 

Here p is any mapping (possibly nonlinear) which uses the inner products in AINf 
to approximate Sf. We say that p is an algorithm using wn, Thus em(A/n, i) 

measures the minimal error among all algorithms using Mn, We then have 

(3.9) em(An, I j) = (n -(m+r)/N) as n -- oo. 

Furthermore, in the quasi-uniform case, the bound in (3.9) can be achieved, i.e., 

(3.10) em(A/n, IT) = 0(n- (m+r)/N) as n -) 00. 

From this, it follows that the FEM is quasi-optimal if and only if k > 2m - 1 + r. By 
quasi-optimal [13], we mean that the FEM has error which (to within a constant 
factor) is minimal. 

We finally ask whether there is any better set of inner products to use, so as to 
minimize the error. Let 

(3.11) em (n, i) = inf em (A, i), 

the minimum being over all information A/ consisting of n linear functional. We 
then have 

(3.12) em(n, 2r) = O(n-(m+r)/N) as n -) oo. 

From this it follows that the finite element information AIn is quasi-optimal. 

4. Analysis of the Normed Case. In the next two sections, we extend the 
results of [15] to the case where the bilinear form B is weakly coercive and where 
error is measured in the norm 11 1 l (where 0 < 1 < m and (1.2) holds). In this 
(as in the previous) section, we let F denote the unit ball in Hr(Q2). Moreover, we 
let el(pnp, 7), el(.NM, 7), and el(n, 7) be as in the previous section, except that now 
"i" is replaced by "I" in (3.5), (3.8), and (3.11). 

We first determine the nth minimal error el (n, i). 

THEOREM 4. 1. 

el(n, ;) = 0(n-(r+2m-l)/N) as n -+ oo. 

Proof. From [11], we have 

(4.1) el (n, 7) = dn(S2i, HEj (f)). 

(Here, and in what follows, we let dn denote the Kolmogorov n-width. In addition, 
a subscript E attached to a Sobolev space indicates that those essential boundary 
conditions which are well-defined for that space are satisfied.) For any 0 > 0, let 

(4.2) X(0) = { E C Hr+2m(Q): IIUIlr+2m < 0 } = OBHE+2m (Q). 

(Here, and in what follows, BX denotes the unit ball of the space X.) Then the 
shift theorem (2.5) yields 

(4.3) X(o-') C S7 C X(a), 
and so (4.1) and (4.3) yield 
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But (4.2) implies that 

(4.5) dn (X(O)) = Odn (BHE+2m(Q), HIE(f)) vo > 0, 
so that (4.4) and (4.5) yield 

(4 6) -dn (BHr+2m (Q) IH~l (j) ) < el (n, F) < adn (BHE+2 (Qj) IHEl ()) 
From [3, Theorem 2.5.1], we find 

(4.7) dn (BHE+2m (j),H ()) I e (d2 (BH2(rn, L2(r)(+ )) . 

But HE12(0) = H1/2(Q) = Hd'12(Q), and so 

(4.8) dn (BHEi (), L2 (r) = 4 (BHO/2 () L2 (Q)) 

- e (dn (BHO(r), L2(r)"12), 

the last by another application of [3, Theorem 2.5.1]. Hence (4.6), (4.7), and (4.8) 
yield 

(4.9) el(n, i) = e (dn (BHl(Q)rL2(Q))r+2m). 

But the results of [7] yield that 

(4.10) dn (BHO1 (Q), L2 (Q)) = e (n-1/N). 
The theorem follows immediately from (4.9) and (4.10). O 

We want to determine el ('pn, the Hl (Q)-error of the FEM. Recall from (3.4) 
that u = min{k+ 1 -m,m+r}. 

THEOREM 4.2. (i) el(?Pn, 7) = Q(n-(O+m-l)/N) as n -- oo. 
(ii) If { 'Tn 1?n?I is quasi-uniform, then 

el(?Pn, 2) = e(n-(0+m-l)/N) as n -+ oo. 

Proof. First note that Theorem 4.1 yields 

(4.11) el((Pn, 7) > el(n, 2r) = e(n-(r+2m-l)/N). 
It remains to show that 

(4.12) el(pn, 7) = Q(n-(k+1-l)1N) 
since (4.11) and (4.12) yield (i), while (i) and the usual estimate (3.3) yield (ii). 

The proof of (4.12) is very similar to that of [15, (4.17)]. Let Q?0 be the interior 
of a hypercube whose closure is contained in Q, and let 

Tn? = KE Tn: KE 0}. 

Choose u E HE+2m(Q) such that 

U(x) = ( ?)!Xk+ Vx E . 

In what follows, we define (for any region K E Rn) I . I1,K to be the usual seminorm 
[5, (3.1.2)] for nonnegative integers 1, while for nonintegral values of 1 > 0, we define 
I . I1,K by the Sloboditski' technique [8, p. 96], i.e., 

IV12 = E J J (Dav(x) - Dav(2)) dckdx. 1 
IKI-WaK= K IX 

- 
~IN+2(1- Ll) 
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In any case, we have 11 I 1,K > I K We write Pk(K) to denote the space of 
polynomials of degree up through k over K. 

Let K E T?. We claim that there is a positive constant C1, independent of K 
and n, such that 

(4.13) inf l K> C' vol (K) 2(k+1-1)/N+1 

To show (4.13) is true, note that K is the affine image of a "reference element" K 
which is independent of K. It is straightforward to check that the functionals 

v IVlk+l,k and v ^Pnf(K) - Iik 

are seminorms on Pk+1(K). Since I < m < k (the last by [15, Lemma 4.1]), they 
have the same kernel Pk(K). Since Pk+, (K) is finite-dimensional, there is a positive 
constant C1 = C1(k,m,K) such that 

(4.14) inf Iv- SIik ? GIVlk+lK VO E Pk+1(K). 
gEPk (K) 

As in [15], we may then use [5, Theorem 3.1.2] and (4.14) to conclude that (4.13) 
holds. 

Let 
Qn =int U{K: KE T?}. 

Letting #Tn? denote the number of elements in the set Tn, we may then use (4.13) 
to see that 

inf IU sI12 > inf lU _ 8I12 
SEsSn KET0 SEPk (K) 

? c2 2k111+ 
(4.15) C E vol (K)2k1l/+ 

C2 no()2(k+l-I)/N+l 
- 1 (#nTo)2(k+1-1)/N' 

the last because 
Z vol(K) = vol(fXj). 

Since Qn c Q and limn,0o vol((X) = vol(Qm), there is an index no such that 

(4.16) vol(Wn) > 2 vol(Q?) Vn > nO 
Hence (4.15) and (4.16) yield that there is a positive constant C2, independent of 
n, such that 

(4.17) inf lu - sli > C2 (#Tno)-(k+l-I)/N Vn > nO. 

But [15, (4.14)] shows that #Tn7 = 0(n), and so there exists a positive constant 
C3, independent of n, such that 

(4.18) inf Iu -s > C3n-?(k+l-I)/N Vn > nO. 

Now let f = Lu. Then f is a nonzero element of Hr(Qj), since L is invective and 
u is a nonzero element of HE+2m(Q). Let 

f*= 1 

IlfI|r' 
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so that 
Sf = I I fIr U. 

Then ?pn(iNf*) E Sn and I II1 > ?I 1 yield 

lISf -(Pn(nf)IIl > ISf (Pn(Nnf)Il > insf ISf s 

(4.19) > inf Iu -sl 
- I Ir SESn 

the latter since Sn is a subspace of HF,(Q). Letting 

_ 
C3 

(which is a positive constant, independent of n), we see that (4.18) and (4.19) imply 

(4.20) IISf* - On(Nnf)Il > Cn (k+1)/N Vn > no. 

Since f* E i, the desired conclusion (4.12) follows immediately from (4.20) and 
the definition (3.5) of the error of the FEM. LO 

We now show that (in the quasi-uniform case) the FEM is a quasi-optimal 
method using FEI if and only if k > 2m- 1+r; however, FEI is always quasi-optimal 
information. 

THEOREM 4.3. (i) elf(A1n, T) = Q(n-(r+2m-1)/N) as n -- oo. 
(ii) If { 'Tn 1?n?I is quasi-uniform, then 

elf (nI, 2) = e(n-(r+2m-l)/N) as n -+ oo. 

Proof. Using Theorem 4.1, we have 

el(AIn, i) > el(n, i) = 0(n-(r+2m-l)/N) 

establishing (i). To establish (ii), we let z E .f n ker .Mn, so that 

(4.21) (z, s)o = 0 Vs E Sn and IIZIlr < 1. 

Let g E H-1(1). Then 1 <m yields that g E H-m(Q). Symmetry of B and (4.21) 
yield 

(Sz, 9)o = B(Sz, Sg) = (z, Sg)o = (z, Sg- s)o Vs E Sn, 
and so 

(4.22) I(Sz,g)oI ? IIZIjrijS9-8jI-r Vs E Sn. 
By [3, Theorem 4.1.1], there exists a positive constant C1, independent of n, as well 
as an s E Sn, such that 

(4.23) JISg - 8II-r < Cin-IIN lSg112m-1 < Clan-IIN 1101-1. 

Here, A is given by 

(4.24) A =min{r+2m-l,k+1+r} =r+2m-1 

(the latter due to (1.2)), while a in the right-hand inequality comes from the shift 
theorem (2.5). Hence, (4.21)-(4.24) yield 

(4.25) ' g)1 < Clarn-(r+2m-l)/N- 
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Since g E H-1(Q) is arbitrary, (4.25) implies 

(4.26) ISzI = I< C(Sag)o n-(r+2m-)/N 
gEH-1(0) 91- 

Since z E jr n ker NA1n is arbitrary, (4.26) and [11, Chapters 2 and 3] yield that 

(4.27) el ()n, r) = sup IISzIII < Clan-(r+2m-L)/N 
zE.7nker )4n 

The estimate (ii) follows immediately from (i) and (4.27). 0 
Hence, in the quasi-uniform case, FEI is always quasi-optimal information, while 

the FEM is a quasi-optimal algorithm using FEI if and only if k > 2m - 1 + r. It 
is known that for any information, there always exists a linear combination (of the 
linear functionals making up that information) whose error is minimal among all 
algorithms using that information; this algorithm is called the spline algorithm [11, 
Chapter 4]. In particular, this implies that the spline algorithm using FEI is always 
quasi-optimal among all algorithms using any information, while the FEM is quasi- 
optimal among all algorithms using any information if and only if k > 2m - 1 + r. 

5. Analysis of the Seminormed Case. In the previous section, we extended 
the results of [15] to the case where the bilinear form B is weakly coercive and error 
is measured in the norm 11 IiII for 0 < I < m. In this section, we weaken one further 
condition of [15]. Rather than assume that 7 = BHr(Q), the unit ball of Hr(Q), 
we assume in this section that 7 = BHr(Q), the set of all functions f in Hr(Q) for 
which If Ir < 1. 

In this section, el ('pn, r), el (Ann r), and el (n, r) will be defined as in the previous 
section, except that now r = BHr(Q). We assume that r is a nonnegative integer. 
Let Pr- 1(Q) denote the space of all polynomials in N variables whose degree does 
not exceed r - 1, treated as a space of functions defined on Q. We also let 

n =dimPri()= (N+ r -1) 

denote the dimension of this space of polynomials. 
We first obtain an estimate of the nth minimal error. 

THEOREM 5. 1. (i) If n < n*, then el (n, 7) = oo. 
(ii) el(n, a) = E(n-(r+2m-l)/N) as n -? oo. 

Proof. (i) follows immediately from [11, Theorem 2.3.2]. To establish (ii), let 

frt() = Hr(Q)1p 
under the quotient norm. Then [14, Lemma 5.3] yields 

(5.1) el (n, i) = 0 (el (n - n* , BHr(Q)j) = 0 (el (n - n*, BHr(j))), 

where (as in the previous section) "B" denotes the unit ball and the second step is 
because BHr(Q) C BHr(Q). But Theorem 4.1 yields 

(5.2) el (n - n, BHr(Q)) = e ((n - n*)-(r+2rn-I)/N) = e(n-(r+2m-l)/N). 

Hence, (5.1) and (5.2) yield 

(5.3) el(n, r) = Q(n-(r+2m-l)/N) 
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On the other hand, BHr(f2) C BHr(Q2) = . yields 

(5.4) el(n, 27) > el (n, BH r(j)) = e(n-(r+2m-l)/N). 

The estimate (ii) then follows from (5.3) and (5.4). O 
We next investigate the error of the FEM. We show that either the FEM has 

infinite error, or the estimates of Theorem 4.2 hold. Once again, recall from (3.4) 
that ,u = minf k + 1 - m, m + r }. 

THEOREM 5.2. (i) If SPri1(f) g Sn, then el(pn, ,F) = 00. 
(ii) If SPrj(Q) C Sn for all sufficiently large n, then 

el(?Pn, 2) = Q(n-(n-+m-l)/N) as n -+ oo, 

where the "Q" may be changed to "e" when { Tn }?n?T= is quasi-uniform. 

Proof. (i) Let SPri(Q) g Sn. Since the range of Pn is Sn, there exists f & 
Pr-1(12) such that pn(AInf) f Sf. Since pn is linear and Pri(Q) = ker Ir, we 
may use [11, Lemma 3.2.2] to see that el(pn, 1) = oo. 

(ii) Let SPri(Q) C Sn. Since BHr(Q) C ., Theorem 4.2(i) yields 

el ((Pn, .) > el ((Pn, BHr(Q)) = e(n-(H+m-l)/N). 

Suppose now, in addition, that { Tn }?=L1 is quasi-uniform. We need only show that 

(5.5) ei(p( 1) = 0(n-(II+m-1)/N) as n -+ oo. 

Let f e T. Then there exists a unique choice of 

fi E Pr-i(Q) and f2 E Hr() =H 

such that 

(5.6) f = fl + f2. 

Recall [5, Theorem 3.1.1] that there is a positive constant Ci such that 

(5.7) 11 - Jr < C1| I Jr on Hr(jj). 

Since fi e Pr-,(Q), and f e F, we have 

Ilf2I1r < Cllf2Ir = ClfiJr < Ci, 

so that (3.3) yields that there is a positive constant C2 (independent of n and f) 
such that 

(5.8) 11Sf2 - (Pn(Gnf2)Jl1 < Cnf(p+ml)/Nllf2I<r C2n (u+m1l)/N. 

Now fi e Pr(2(Q) and SPri((Q) C Sn, so that Sf1 e Sn. Since 1 < m, we may 
use (3.2) to see that 

(5.9) 11Sf1 - Pn(NAInfl)I1 ?< ISfi - pn(Anfl) Ilm < C insf IISfi - slIm = 0. 

Since S, Pn, and )Nn are linear, the estimates (5.6), (5.8), and (5.9) yield that 

- 1Sf - (AInff)Illl < C2n(H+ml)/N. 

Since f e 1 is arbitrary, this yields (5.5). LI 
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Remark 5.1. We illustrate the different possibilities in Theorem 5.2 by consid- 
ering the model problems (1.3) and (1.4), where we have r = 1 and m = 1. Hence 
we define two operators Si: H1 (0, 1) -+ Ho (0, 1) and S2: H1 (0, 1) -+ H1 (0, 1) by 

u = Sif satisfies _U1 U f in(0,1) Vf E H1(01) 
u(0) =u(1)= 0 

and 

u = S2f satisfies '(0) = in(0) 1) Vf E H1(0 1). 

(Note that Si and S2 differ only in their boundary conditions.) We claim that the 
FEM has infinite error for Si, but has finite error for S2. Again, keep in mind that 
these problems are being solved for all f E H1 (0, 1) such that If I, < 1. 

To see that the FEM has infinite error for Si, note that Si (Po(0, 1)) is spanned 
by the solution of the problem 

-z"+z= 1 in (0,1), z(0) = z(1) =0, 

the solution of which is 

Z(Z) = -(2 _ )eZ 2 1)e- 

Since z is not a piecewise polynomial, we find that Si (P1 (0, 1)) g Sn, no matter 
how big the degree k of the subspace Sn or the dimension n of Sn are. Hence, the 
FEM has infinite error for the problem Si. 

We now consider the problem S2. We find that S2 (Po(0, 1)) = Po(0, 1), since 
the only solution to 

-z" + z = 1 in (0,1), z'(O) = z'(1) = 0 

is 
z(x) 1. 

Since [15, Lemma 4.1] yields that k > 1, and there are no essential boundary 
conditions for this problem, we have S2 (Po (0, 1)) C Sn for all n > 1 and any choice 
of k. This shows that the FEM has finite error for the problem S2. In fact, the error 
of the FEM for this problem using Sn (in the quasi-uniform case) is e(n-(x-l)), 
where X = min{ k + 1, 3 }. Comparing Theorems 5.1 and 5.2, we see that the FEM 
is quasi-optimal for this problem if and only if k > 2. 0I 

Remark 5.2. Since Sn C HE(Q), the condition SPri(Q) C Sn is equivalent 
to the condition Pri(Q) C LS,. For situations in which the explicit form of the 
solution is unknown (i.e., most cases arising in practice), it will generally be easier 
to verify whether Pri(Q) C LS,, than whether SPri(Q) C Sn. L 

Remark 5.3. The condition SPri(Q) C Sn is very restrictive, since it is not 
generally the case that the solution u of the problem Lu = f (with f polynomial) is 
a piecewise polynomial satisfying the boundary conditions. (For example, we saw 
in Remark 5.1 that the solution u = Sif of (1.3) with f _ 1 involves exponential 
functions.) It would be extremely unlikely to have SPri(Q) C Sn in most situ- 
ations, especially when the boundary of Q is complicated or the coefficients a<>: 
of the L are nonpolynomial. Hence, we see that the FEM has finite error for the 
seminormed case only under exceptional circumstances. oI 

Hence, there are situations in which the FEM has infinite error, no matter how 
big k and n are. Is this a feature of the FEM itself, or is it a feature of the 
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information which the FEM uses? In the remainder of this section, we show that 
the fault lies with the FEM rather than with the FEI. In -fact, we will show that 
FEI is quasi-optimal information. 

In order to do this, we first establish 

LEMMA 5. 1. There exists a positive integer no and a positive constant C such 
that for any n > no, 

IIZIlr < CIZ~r Vz E ker NA4n 
Proof. If r = 0, this is immediate. 
Suppose now that r > 1. If the conclusion is false, then there is a subsequence 

{ zi E ker .AIr90 }1 such that 

(5.10) IIZnjIr=1 and lim IZn JIr=O. 
i-+ 00 

Following the proof of [8, Theorem 3.1.1], the Rellich-Kondrasov compactness theo- 
rem yields that there exists z E Pri (Q) and a subsequence, which we again denote 

{znj E ker Ani/ }1, such that 

(5.11) lim znj = z in Hr(Q) and thus in L2(Q). 

Hence, we see that 

(5.12) lIZIlr = 1. 
We claim that z = 0, contradicting (5.12). Indeed, let E > 0. Using denseness of 

COOO(Q) in L2(Q), there exists w E CO??(Q) such that 

(5.13) lIz - WIo < LE. 

Since CoO(Q) C Hp (n) n H1(Q), the standard results (found in, e.g., [8, Chapter 
6]) yield that there is a positive constant Ci (independent of z and w) such that 
for any j > 0, there exists wj E Sj for which 

11w - wA|o < C0 11/N IW|1 . 

Hence, there is an index io(E) such that for any i > io(E), there exists Wnr E Sni 
satisfying 
(5.14) 11W - Wni| l < 3E. 

From (5.11) and 1 11? * lir there is an index i1(E) such that for any i > i1(E), 
there exists znj E ker AIni for which 

(5.15) lZl-znill0 < 'E. 

Let i2(E) = max{ io(E), i1(E) }. Then (5.13)-(5.15) and the triangle inequality yield 

(5.16) 11Zni -Wni Io? <E Vi > i2(E). 
But znj E ker A/ni = Hr (n) n (L2(Q)/S n ) and wni E Sni . Hence (zni, wni)o = 0, 
which, when combined with (5.16), yields 

Ini 112 < ? Izni Io - 2(Zni, Wni)O + IJWnt 112 = lIznj - Wnj ? 2 
6. 

Thus for any E > 0, there is an index i2 (E) for which 

Iznjlbo <e Vi > i2(E). 
Hence 
(5.17) lim znj = 0 in L2(Q)r. 

00 

From (5.11) and (5.17), we have z = 0, the desired contradiction. o 
We are now ready to show that the FEI is always quasi-optimal information for 

the seminormed case. 



COMPLEXITY OF INDEFINITE ELLIPTIC PROBLEMS 471 

THEOREM 5.3. (i) ej(.N, i) = Q(n-(r+2m-n)/N) as n oo. 
(ii) If { T, }?tn?= is quasi-uniform, then 

el(.I, i) = E(n-(r+2m-l)/N) as n -+ oo. 

Proof. Using Theorem 5.1, we have 

el(NIn, .1) > el(n, .) = e(n-(r+2m-l)/N) 

establishing (i). To prove (ii), let z E 1 n ker An. For any g E H-'(F), we use 
(4.22) to see that 

(5.18) I(Sz,g)o0 < IIZIjr inf |IS9q-s8-r . 

By (4.23) and (4.24), there is a positive constant Ci (independent of n, g, and z) 
such that 

(5.19) inf IS9 - SII-r < Con-(r+2m-l)/Nlg~ll_I. 
SEESn 

Since z E .i, Lemma 5.1 implies that there is a positive constant C2 (independent 
of n and z) such that 

(5.20) IIZIjr < C2IZIr < C2. 

Hence, (5.18)-(5.20) yield the existence of a positive constant C (independent of n, 
z, and g) such that 

(5.21) 1(SZ' 00 I < Cn- (r+2m-l)/N 

ugh1-1 - 

Taking the supremum in (5.21) over all nonzero g E H-1(0), we find 

(5.22) hISzhhi < Cn-(r+2m-l)/N 

Since z E 1 n ker AIn is arbitrary, (5.22) and [11, Chapters 2 and 3] yield 

el (Nn, 7) < Cn-(r+2m-l)/N 

which, along with (i), establishes (ii). Li 
Hence when the grid sequence is quasi-uniform, FEI is always quasi-optimal 

information for the seminormed case. This means that the spline algorithm [11, 
Chapter 4] using FEI is always quasi-optimal among all algorithms using any in- 
formation. This is to be contrasted with the fact that in the seminormed case, 
the error of the FEM need not even be finite; however, when the FEM has finite 
error, it is quasi-optimal among all algorithms using any information if and only if 
k > 2m - 1 + r. 

6. Complexity Analysis. In this section, we discuss the complexity (minimal 
cost) of finding e-approximations to the solution of the variational boundary-value 
problem, as well as the penalty for using the FEM when k < 2m - 1 + r. 

Let E > 0. An algorithm p produces an e-approximation to the problem (S, 1) 
in the Hl(Q)-norm if ej(p, .) < E. The complexity comp(p) of an algorithm p is 
defined via the model of computation discussed in [11, Chapter 5]. Informally, we 
assume that any linear functional required by p can be evaluated with finite cost 
cl, and that the cost of an arithmetic operation is unity. 

Recall that Pn denotes the FEM of degree k using the FEI A/n based on the 
finite element subspace Sn. We assume that { 7n }?n=1 is quasi-uniform, where 7n 
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is the triangulation of Q upon which Sn is based. Since the FEI NA/ contains n 
inner products, we find that 

comp(Pn) > ncl.' 

Throughout the remainder of this paper, we assume that 

(6.1) comp(Pn) = E(n) as n -oo. 

Remark 6.1. The assumption (6.1) is reasonable in either of two cases. In the 
first case, we actually assume the existence of an algorithm which can solve the 
linear system generated by the FEM, whose number of operations is linear in n, 
the size of the linear system. This condition holds in a number of special cases- 
finding such linear-time algorithms is still an open problem for the general case. 

Alternatively, one may wish to make an assumption of preconditioning. That 
is, we assume that any computation which is independent of the right-hand side f 
is done in advance, and not counted when determining the number of operations 
required when approximating the solution u to the problem Lu = f. To make this 
more precise, recall that the FEM is a linear algorithm, i.e., it produces a linear 
approximation to the exact solution u(x) having the form En 1 (f, si)ogi(x), where 
91,... ,n GE Sn. Since gi, ... gn are independent of f, they may be determined in 
advance. (This precomputation may be especially efficient in the case where the 
problem Lu = f is to be solved for many different right-hand sides f.) Hence, 
computing the value of the FEM at any point in Q requires at most n multiplica- 
tions and n - 1 additions, once the n inner products (f, s1),... , (f, sn) have been 
evaluated. Thus (6.1) holds. L 

Let 

FEM,(e, i) = inf{ comp(Pn): n is an index such that el(Pn, i) < E } 

denote the cost of solving the problem in the Hl (Q)-norm using the FEM. From 
the results of Sections 4 and 5, along with (6.1), we find 

THEOREM 6. 1. (i) FEM1 (E, BHr(jj)) = e(E-N/(z+m+l)) as E - 0, where p = 
min{k+ 1 - m,m+r}. 

(ii) If there exists no integer n > 0 for which SPri(Q) C Sn, then 

FEM1 (E, BHr(Q)) = 00 Ve > O. 

(iii) If there exists an integer no > 0 such that SPri(Q) C Sn for n > no, then 

FEM1 (E, BHr(g)) = e(,E-N/("+m+l)) as E --+ 0. 

As mentioned previously in Sections 4 and 5, for any information, there exists 
a linear algorithm (the spline algorithm) having minimal error. Let (PI denote the 
spline algorithm using the FEI An. If we agree once more to accept the idea of 
preconditioning as discussed in Remark 6.1, we find 

(6.2) comp(p,) = @(n) as n - oo. 

We now let 

SPLINE,(E, .) = inf{comp( o): n is an index such that el(Qp) <e } 

denote the cost of solving the problem using the spline algorithm. Using (6.2), the 
minimal error properties of the spline algorithm, and the results of Sections 4 and 5, 
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we find 

THEOREM 6.2. In both the normed case = BHr (Q) and the seminormed 
case 7= BHr(Q), we have 

SPLINEI(, ) = (-/(r+2m-)) as e -+ 0. 

We now wish to determine the minimal cost of solving the problem. Let 

COMPI (e, 7) = inf{ comp(p): p is an algorithm for which el (p, 7) < E } 
denote the problem complexity, i.e., the inherent cost of solving the problem with 
error not exceeding e,. Using the results of the two previous sections, we then find 

THEOREM 6.3. In both the normed case F = BHr (Q) and the seminormed 
case 7= BHr(Q), we have 

COMPl(e, y) = ae(0-N/(r+2m-.)) as I O 

Hence, we may draw the following conclusions: 

COROLLARY 6. 1. (i) The spline algorithm using the FEI is always quasi-optimal, 
for both the normed and seminormed cases. 

(ii) The FEM is quasi-optimal for the normed case if and only if k > 2m - 1 + r. 
If k<2m-1+r, then 

FEMI (E, BHr(Q)) AN 
as \ AN) 0 

COMPI (e, BHr (Q)) = se 60 
where 

(6.3) A= 1 - 
k?1-1 r?2m-l10 so that 

lim FEMI (e, BHr(Q)) . c-+O COMP1 (E, BHr (Q)) 
(iii) The FEM is quasi-optimal for the seminormed case if and only if k > 2m - 

1 + r and SPri1(1) C Sn for all sufficiently large n. If k < 2m - 1 + r and 
SPri(Q) C Sn for all sufficiently large n, then 

FEMI (, B Hr( Q)) A 
e as g o , 

COMPI (6, BHr(jj))=AN e- 0 

where A is given by (6.3). In the case that SPri (Q) (Z Sn for all n > 0 we have 

FEMI (e, BHr(Q)) = Ve> O. Oi 

Hence when k is too small for a given value of r, there is an infinite asymptotic 
penalty for using the FEM instead of the spline algorithm. Corollary 6.1 implies 
that there is an e0 > 0 such that 

(6.4) SPLINE,(e, 7) < FEMI(e, 7) for 0 < e < E0. 
What is the value of E0? If e0 is unreasonably small, it may turn out that it is more 
reasonable to use the FEM for "practical" values of e. We determine the value of 
Eo for a model problem in 

Example 6.1. Let N = 1, Q = (0,7r), m = 1, r = 1, HE(12) = Ho(0,7r), and 
consider the bilinear form B: Hol (0, ir) x Ho (0, ir) -+ R defined by 

B(v,w)= jv'w' Vv, wE Ho(0,7r). 
,0 
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Hence for f E H'(O, 7r), u = Sf is the variational solution to the problem 

-u" =f in (0, ir), u(O) = u(7r) = 0. 

We choose Sn to be the n-dimensional subspace of Ho' (0, ir) consisting of piecewise 
linear polynomials with nodes at x; = jir/(n + 1) for 0 < j < n + 1, so that k = 1. 

We wish to determine so such that (6.4) holds with I = 1 and Y = BH1 (0, ir). 
This is similar to [15, Example 6.1]. The only difference is that in [15], we measured 
error by the energy norm (which is the H1-seminorm I Ii), while here we use the 
H1-norm 11 111. 

Using the Poincare inequality 

11 Il1o < I1 11 on H01(017r) 

(see [9]), we have 

I < 11 111 < Vi1 11 on H(O,7r). 
Hence [15, (6.25) and (6.32)] and this inequality imply 

(6.5) el~pn, ~)> 
or . 0.90689968 

(6.5) el((RnS)> -v+/2(n +1 n + 

and 

(6.6) ei(~, ~) < _____ .1.4142136 (6.6 e(n + 1)2 (n + 1)2 

where (as before) Pn denotes the FEM and p-9 denotes the spline algorithm using 
FEI. 

To proceed further, we require sharper versions of (6.1) and (6.2). First, note 
that since any algorithm which actually makes use of all of the inner products of 
Nn must perform at least n - 1 arithmetic operations, we find (in particular) that 

(6.7) comp(Pn) > nc1 + n - 1. 

Next, we accept the idea of preconditioning. In this case, we find that linearity of 
the spline algorithm implies that it may be evaluated at any point in Q using at 
most n multiplications and n - 1 additions, once the inner products of J.n have 
been evaluated. Hence 

(6.8) comp(pn) < nc1 + 2n - 1. 

Using (6.5) and (6.7), we find that 

FEM1(e, ( ) > (C1 + 1) (lr - _) - 1, 

while (6.6) and (6.8) yield 

SPLINE1(e, F) < (Cl + 2)(2E-1/2 - 1) - 1. 

From these two inequalities, it follows that 

(6.9) SPLINE1(e, F) < FEM1(e, ( ) if 0 < E < s0, 
where EO is the smallest positive solution E of 

(C? + 1) 
7 

-1) =(c+?2)( Y2-.1/2 - 1). 
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Some algebra yields 

0 =e 60(ci) = (X(2cl + ) - A/ (-cl + 1) - (cl + ?) 

We now examine the value of eo(ci) under various assumptions on the cost cl of 
evaluating a linear functional, noting that e0(cl) increases with (nonnegative) cl. 
Clearly, c1 > 0, so that 

1 
/2\2 

eo(co) > eo(0) = (I - (VI - 2) ) 0.22747884. 

This tells us that (6.9) holds for all e less than (roughly) 0.227. Next, we assume 
that cl > 1, i.e., that evaluating a linear functional is at least as hard as an 
arithmetic operation. (It would be hard to imagine otherwise.) In this case, 

co(co) > co(1) = (32X - (9 - 0.37714081. 

Finally, it is reasonable to assume that cl is very large, i.e., that evaluating a linear 
functional is much harder than an arithmetic operation [11, p. 85]. One may check 
that 

lim Eo(ci) = 2 0.58157202, 

giving an estimate of eo(ci) for large values of cl. 0 
Based on this example, it seems reasonable to conjecture that (6.4) generally 

holds for "reasonable" values of eo. However, see the discussion at the end of [15, 
Section 6] for some comments regarding this conjecture. 

7. Summary, Extensions, and Open Questions. We have shown that FEI 
of degree k > m is always quasi-optimal information for indefinite linear elliptic 
problems Lu = f under the following conditions: 

(i) Error is measured in the Sobolev 1-norm, where 0 < 1 < m. 
(ii) Either IIf Ir < 1 (where r > -im) or If Ir < 1 (where r is a nonnegative 

integer). 
(iii) k > 2m- 1 -1. 

However, the FEM is not always quasi-optimal among all algorithms using FEI. In 
the normed case IlfIr < 1, the FEM is quasi-optimal if and only if k > 2m - 1 + r. 
In the seminormed case If Ir ? 1, the FEM has finite error if and only if the finite 
element subspace contains SPr-i(Q2); if this holds, then the FEM is quasi-optimal 
if and only if k > 2m - 1 + r. In the case where k < 2m - 1 + r, the asymptotic 
penalty for using the FEM is infinite. 

What happens when we try to weaken the assumptions above? 
One natural weakening of (i) is to allow I to satisfy the inequality 1 < m. The 

proofs of Theorems 5.2(i) and 6.2(ii) (the lower bound for the FEM) do not hold, 
since there seems to be no natural definition of the Sobolev l-seminorm for negative 
1. In the case where { 7n }?=L0 is uniform and HEm(Q) = Hm(Q) (i.e., a Neumann 
problem), the results in [10] show that these results do hold for negative I in this 
special situation. We conjecture that this is true in general, i.e., the lower bounds 
for the FEM given in these theorems hold for any I < m. However, the other results 
in this paper do hold for any I such that I < m, provided (iii) still holds. 
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A further natural weakening of (i) is to allow the error to be measured in non- 
Hilbert norms. For example, one may wish to consider sup-norm estimates, since 
it is often more important to be able to get pointwise estimates on the error than 
mean-square error estimates. 

Condition (ii) may be weakened in a number of ways. Rather than use the norm 
(or seminorm) over Hr(q), we may use l 1rap or Irpi the norm or seminorm 
in WrP(Q). Alternatively, we may decide to use the norm in more complicated 
spaces, such as the Besov space Bpr8 ([) (see [4]). If we let Y' be the set of elements 
in one of these spaces whose norm (or seminorm) is bounded by unity, is FEI still 
quasi-optimal information? When is the FEM quasi-optimal? 

What happens when (iii) no longer holds? In this case, the bounds that may be 
established using the techniques of this paper are no longer tight. Although (iii) 
holds for 1 > 0 in most cases of practical interest, it is important to find out what 
happens when (iii) no longer holds, as is the case when rectangular elements are 
used or when error is measured in negative norms. 

We finally mention that all of the results of this paper hold for a worst-case 
setting, in which the error is determined by the maximum value (over all elements 
of ") of the difference between the exact solution and the approximate solution. 
This is by no means the only possible model. As an example, Trojan [12] considers 
an asymptotic setting, in which a fixed (but arbitrary) element f E .T is chosen, a 
sequence of functionals of f is evaluated, and these values are used to produce an 
approximation of the solution u of the problem Lu = f. Other possible settings 
include an average setting and an asymptotic-average setting. How close is the 
FEM to being optimal in such settings? 
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